Aluminiumkaliumsulfat-Dodecahydrat, auch Kaliumaluminiumsulfat-Dodecahydrat, Kaliumalaun, Kalialaun oder Alaun genannt, bildet farblose oktaederförmige Kristalle.

Eigenschaften

Die Löslichkeit des Aluminiumkaliumsulfats steigt stark mit der Temperatur. Aus heißer gesättigter Lösung lassen sich große oktaederförmige und würfelförmige Kristalle züchten.

Kalialaun-Kristalle

Verwendung

Es hatte früher Bedeutung in der Gerberei und beim Färben, ist jedoch heute vom Aluminiumsulfat verdrängt.

Noch heute findet es teilweise Verwendung als „Rasierstein“ zur Blutstillung. Aufgrund der geruchshemmenden Wirkung ist es in manchen Deodorants enthalten. Es wirkt als Inhibitor bei der Zersetzung von Schweiß in Buttersäure.

In Lebensmitteln wird es als Festigungsmittel bzw. Stabilisator zugesetzt. Es ist in der EU als Lebensmittelzusatzstoff der Bezeichnung E 522 ausschließlich für Eiklar sowie glasiertes, kandiertes oder kristallisiertes Obst und Gemüse zugelassen.[5]

Es wird unter dem Handelsnamen LMA als Pflanzenschutzmittel gegen Feuerbrand verwendet[6]; in Deutschland ist es jedoch nur stark begrenzt auf Grund einer Notfallzulassung einsetzbar[7].

Es wird, mit Lebensmittelfarben gefärbt, in Hobby-Kristallzucht-Experimentierkästen angeboten.

Es ist auch ein wasserfreies Kaliumaluminiumsulfat, KAl(SO4)2 bekannt.[3][8]

Aluminiumkaliumsulfat wird als Adjuvans in Diphtherieimpfstoffen oder Diphtheriekombinationsimpfstoffen seit Mitte der 1920er Jahre verwendet („Alum“).[9][10] Es gilt als das erste für Humanimpfstoffe verwendete Adjuvans. Ursprünglich wurde wasserlösliches AlK(SO4)2 direkt mit in einem Phosphatpuffer gelösten Antigen vermischt (Präzipitation). Das Präzipitat ist amorphes Aluminiumkaliumsulfat und hat ähnliche Eigenschaften wie das Adjuvans Aluminiumphosphat.[9]

Kalialaun wird bei der Hortensienzucht eingesetzt zur Blaufärbung der Blüten von Bauernhortensien (Hydrangea macrophylla). Die Pflanzstelle wird dabei beim Setzen der Pflanze mit 5–10 g Kalialaun angereichert und ein- bis zweimal pro Jahr mit der gleichen Menge versetzt. Die Hortensien entwickeln dann eine hellblaue Blüte über die Sommermonate.

Gewinnung

Kaliumaluminiumsulfatdodecahydrat kann aus Al2(SO4) *18H2O und K2SO4 in wässriger Lösung dargestellt werden. Die Verbindung kristallisiert aus einer heißen, gesättigten Lösung der Edukte beim Abkühlen in klaren, farblosen, glitzernden, oktaedrischen und würfelförmigen Kristallen aus. Aus den so entstehenden Kristallen können Impfkristalle gepickt werden, mithilfe derer größere Kristalle gezüchtet werden können.[11]

Unregelmäßig gewachsener Kalialaun Oktaeder mit symmetrischen Einschlüssen

Dabei läuft folgende Reaktion ab:



Bei der Kristallzucht kann es passieren, dass die Kristalle keine perfekte Form erreichen. So entstehen häufig geplättete Oktaeder und Würfel, wenn der Kristall am Boden des Gefäßes heranwächst und nicht an einem Faden aufgehangen wird. Auch Zwillingsbildung ist möglich. Ein perfekter Kristall hat keinerlei Einschlüsse aufzuweisen.

Einzelnachweise

  1. Eintrag zu E 522: Aluminium potassium sulphate in der Europäischen Datenbank für Lebensmittelzusatzstoffe, abgerufen am 29. Dezember 2020.
  2. a b Eintrag zu Alaun. In: Römpp Online. Georg Thieme Verlag, abgerufen am 15. Juli 2014.
  3. a b Externe Identifikatoren von bzw. Datenbank-Links zu Aluminiumkaliumsulfat-Anhydrat: CAS-Nummer: 10043-67-1, EG-Nummer: 233-141-3, ECHA-InfoCard: 100.030.116, GESTIS-Stoffdatenbank: 5000, PubChem: 24856, DrugBank: DB09087, Wikidata: Q411309.
  4. a b c d e f Datenblatt Aluminiumkaliumsulfat-Dodecahydrat (PDF) bei Merck, abgerufen am 3. Juni 2018.
  5. ZZulV: Anlage 4 (zu § 5 Abs. 1 und § 7) Begrenzt zugelassene Zusatzstoffe
  6. LMA gegen Feuerbrand bei Kernobst, Produktinformation der Herstellerin, Technische Information für die Schweiz, Stand März 2019, Anwenderhinweise für die bis 2016 befristete Bewilligung in der Schweiz
  7. Notfallzulassung nach Art. 53 der Verordnung (EG) Nr. 1107/2009, Zulassung 2019 von 260t für die Zeit vom 1. April bis 29. Juli 2019
  8. D.V. West, Q. Huang, H.W. Zandbergen, T.M. McQueen, R.J. Cava: Structural disorder, octahedral coordination and two-dimensional ferromagnetism in anhydrous alums. In: Journal of Solid State Chemistry. 181, Nr. 10, 2008, S. 2768–2775, doi:10.1016/j.jssc.2008.07.006.
  9. a b Nathalie Garçon und Martin Friede: Evolution of Adjuvants Across the Centuries. In: Stanley A. Plotkin et al. (Hrsg.): Plotkin's Vaccines. 7. Auflage. Elsevier, Philadelphia 2017, ISBN 978-0-323-35761-6, S. 64, doi:10.1016/B978-0-323-35761-6.00006-7 (elsevier.com).
  10. Armando A Paneque-Quevedo: Inorganic compounds as vaccine adjuvants. Hrsg.: Biotecnología Aplicada. Band 30, Nr. 4, 2013, ISSN 1027-2852, S. 250–256 (englisch, sld.cu).
  11. Gerhart Jander, Ewald Blasius: Anorganische Chemie. 2 Quantitative Analyse und Präparate : mit 31 Formeln und 67 Tabellen und Poster "Taschenfalter". 16., völlig neu bearb. Auflage. Hirzel, Stuttgart 2012, ISBN 3-7776-2133-1 (worldcat.org [abgerufen am 14. Juni 2021]).